Trinh Thanh
Thanh Trinh, Nhung VT (2022), “A Predictive Paradigm for Event Popularity in EventBased Social Networks” in IEEEAccess, doi: 10.1109/ACCESS.2022.3225734
Thanh Trinh. (2022) ‘A comparative analysis of weight-based machine learningmethods for landslide susceptibility mapping in Ha Giang area’, Big Earth Data, 00(00), pp.1–30. doi: 10.1080/20964471.2022.2043520 (ESCI/Scopus-Q1)
Thanh Trinh, D. Wu, R.L. Wang, and J. Z. Huang, ”An effective content-based event recommendation model,” Multimedia Tools and Applications. 2020. https://doi.org/10.1007/s11042-020-08884-9 (SCI-Q1)
Thanh Trinh; Wu, D.; Huang, J.Z.; Azhar, M. Activeness and Loyalty Analysis in EventBased Social Networks. Entropy 2020, 22, 119. doi:10.3390/e22010119 (SCI-Q2)
Thanh Trinh, D.Wu and J. Z. Huang,”C3C: A New Static Content-Based Three-Level Web Cache,” in IEEEAccess, vol. 7, pp. 11796-11808, 2019. doi: 10.1109/ACCESS. 2019.2892761 (SCI-Q1)
Thanh Trinh,, Duc, L.P., Tran, C.T., Duy, T.T., Emara, T.Z. (2022). A New Stratified Block Model to Process Large-Scale Data for a Small Cluster. In: Dang, N.H.T., Zhang, YD., Tavares, J.M.R.S., Chen, BH. (eds) Artificial Intelligence in Data and Big Data Processing. ICABDE 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-030-97610-1_21 (EI)
Thanh Trinh, Ngoc-Tuan Nguyen, D. Wu, and J. Z. Huang, Tamer Z. Emara ”A new location-based Topic model for Event attendees recommendation” 2019 IEEE RIVF International Conference on Computing&Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2019, pp. 1-6. doi: 10.1109/RIVF.2019.8713716 (EI)
Trinh Thanh,Wu D., Huang J.Z. (2017) A New Static Web Caching Mechanism Based on Mutual Dependency Between Result Cache and Posting List Cache. In: Bouguettaya A. et al. (eds) Web Information Systems Engineering ? WISE 2017. WISE 2017. Lecture Notes in Computer Science, vol 10570. Springer, Cham, doi:/10.1007/978-3-319-68786-5 12 (EI, rank A)
Thanh Trinh, D.Wu, S. Salloum, T. Nguyen and J. Z. Huang,”A frequency-based gene selection method with random forests for gene data analysis,” 2016 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), Hanoi, 2016, pp. 193-198. http://ieeexplore.ieee.org/document/7800293/ (EI)